位置:首页 >化学 >化学(综合) >ACS Nano >Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effects in the Hydrogen Evolution Reaction

单层精密合成钼硫化物纳米颗粒及其在氢释放反应中的纳米尺度效应

Monolayer-Precision Synthesis of Molybdenum Sulfide Nanoparticles and Their Nanoscale Size Effects in the Hydrogen Evolution Reaction

作者:Bora Seo;Gwan Yeong Jung;Young Jin Sa;Hu Young Jeong;Jae Yeong Cheon;Jeong Hyeon Lee;Ho Young Kim;Jin Chul Kim;Hyeon Suk Shin;Sang Kyu Kwak;Sang Hoon Joo;

关键词:MoS2,monolayer-precision synthesis,nanoscale size effect,catalyst,hydrogen evolution reaction

DOI:https://doi.org/10.1021/acsnano.5b00786

发表时间:2015年

  • 文献详情
  • 相似文献

摘要

基于金属硫化物的纳米结构材料已经成为催化氢析出反应(HER)的有前途的催化剂,并且在增强它们的活性和耐久性方面取得了显著的进展。对纳米尺度大小相关的催化活性的理解可以提供关于催化反应的重要信息,为先进催化剂的设计提供科学依据。然而,金属硫化物基HER催化剂中的纳米尺度尺寸效应尚未完全建立,这是由于精确尺寸控制金属硫化物纳米颗粒的合成困难。在这里,我们报告了钼硫化物(MoS2)纳米颗粒的制备,其层厚从单层到四层,几乎恒定的基面尺寸为5纳米,并且它们在HER中的尺寸相关催化活性。使用密度泛函理论(DFT)计算,我们确定了最有利的单层、双层和三层MoS2模型结构对于HER,并计算了在这三种模型结构上的HER的初级步骤动力学。结合HER活性测量和DFT计算结果,我们确定了MoS2纳米颗粒在HER中的周转频率随层数减少呈准线性增加的趋势。钴促进的MoS2纳米颗粒也表现出类似的HER活性趋势。我们将更小的金属硫化物纳米颗粒的更高HER活性归因于更高程度的氧化、更高的Mo-S配位数、1T相的形成以及克服过渡态所需的更低的活化能。对纳米尺度大小相关的HER活性趋势的洞察将促进先进HER催化剂以及其他加氢处理催化剂的设计。


Abstract

Metal sulfide-based nanostructured materials have emerged as promising catalysts for hydrogen evolution reaction (HER), and significant progress has been achieved in enhancing their activity and durability for the HER. The understanding of nanoscale size-dependent catalytic activities can suggest critical information regarding catalytic reactivity, providing the scientific basis for the design of advanced catalysts. However, nanoscale size effects in metal sulfide-based HER catalysts have not yet been established fully, due to the synthetic difficulty in precisely size-controlled metal sulfide nanoparticles. Here we report the preparation of molybdenum sulfide (MoS2) nanoparticles with monolayer precision from one to four layers with the nearly constant basal plane size of 5 nm, and their size-dependent catalytic activity in the HER. Using density functional theory (DFT) calculations, we identified the most favorable single-, double-, and triple-layer MoS2 model structures for the HER, and calculated elementary step energetics of the HER over these three model structures. Combining HER activity measurements and the DFT calculation results, we establish that the turnover frequency of MoS2 nanoparticles in the HER increases in a quasi-linear manner with decreased layer numbers. Cobalt-promoted MoS2 nanoparticles also exhibited similar HER activity trend. We attribute the higher HER activity of smaller metal sulfide nanoparticles to the higher degree of oxidation, higher Mo–S coordination number, formation of the 1T phase, and lower activation energy required to overcome transition state. This insight into the nanoscale size-dependent HER activity trend will facilitate the design of advanced HER catalysts as well as other hydrotreating catalysts.