位置:首页 >化学 >化学(综合) >ACS Nano >Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience

石墨烯分子的演变:结构和功能复杂性作为纳米科学的推动力

Evolution of Graphene Molecules: Structural and Functional Complexity as Driving Forces behind Nanoscience

作者:Klaus Müllen;

DOI:https://doi.org/10.1021/nn503283d

发表时间:2014年

  • 文献详情
  • 相似文献

摘要

纳米科学的发展基于化学和物理领域通过互利合作分享能力的能力。考虑到这一点,在这个观点中,我描述了三类化合物:瑞伦染料、多酚苯树状分子以及纳米石墨烯分子和石墨烯纳米带,它们为培养这些关系提供了一个绝佳的平台。这些复杂结构的合成是具有挑战性的,但也是有回报的,因为它们通过扫描隧道显微镜和单分子光谱技术刺激了单分子水平上的独特研究。所选择的分子之间存在密切的功能和结构关系。特别地,瑞伦和纳米石墨烯可以被认为是由融合苯环组成的蜂窝状、圆盘状物种。苯环因此可以被视为通用的模块化建筑单元。多酚苯树状分子首先作为染料的框架,用于多色荧光系统的形成,其次是用于石墨烯合成的化学前体。通过化学设计,可以在单分子水平上调节这些系统的性质,并实现对它们的自组装形成多功能(纳米)材料的纳米尺度控制。


Abstract

The evolution of nanoscience is based on the ability of the fields of chemistry and physics to share competencies through mutually beneficial collaborations. With this in mind, in this Perspective, I describe three classes of compounds: rylene dyes, polyphenylene dendrimers, as well as nanographene molecules and graphene nanoribbons, which have provided a superb platform to nurture these relationships. The synthesis of these complex structures is demanding but also rewarding because they stimulate unique investigations at the single-molecule level by scanning tunneling microscopy and single-molecule spectroscopy. There are close functional and structural relationships between the molecules chosen. In particular, rylenes and nanographenes can be regarded as honeycomb-type, discoid species composed of fused benzene rings. The benzene ring can thus be regarded as a universal modular building block. Polyphenylene dendrimers serve, first, as a scaffold for dyes en route to multichromophoric systems and, second, as chemical precursors for graphene synthesis. Through chemical design, it is possible to tune the properties of these systems at the single-molecule level and to achieve nanoscale control over their self-assembly to form multifunctional (nano)materials.