位置:首页 >化学 >化学(综合) >ACS Nano >Large-Area Single-Layer MoSe2and Its van der Waals Heterostructures

大面积单层MoSe2及其范德瓦尔斯异质结构

Large-Area Single-Layer MoSe2and Its van der Waals Heterostructures

作者:Gi Woong Shim;Kwonjae Yoo;Seung-Bum Seo;Jongwoo Shin;Dae Yool Jung;Il-Suk Kang;Chi Won Ahn;Byung Jin Cho;Sung-Yool Choi;

关键词:MoSe2,monolayer,chemical vapor deposition,van der Waals heterostructure

DOI:https://doi.org/10.1021/nn405685j

发表时间:2014年

  • 文献详情
  • 相似文献

摘要

过渡金属二硫化物的分层结构通过范德瓦尔斯相互作用堆叠,现在吸引了许多研究者的注意,因为它们在单层限制下具有迷人的电子、光学、热电和催化特性。然而,常用的制备单层的方法存在产量低和在大面积应用中延展性差的局限性。在此,我们通过在任意基板(如SiO2和蓝宝石)上的化学气相沉积通过MoO3的硒化,演示了大面积高质量和均匀性的MoSe2的合成。所得的单层在低温光致发光分析下,显示出固有杂质掺杂。MoSe2在石墨烯上的范德瓦尔斯异质结也得到了证实。有趣的是,MoSe2/石墨烯异质结显示出MoSe2特征光致发光的强烈熄灭,表明了光生成的电荷载体在MoSe2和石墨烯之间的快速传输。高度可控的二维材料异质结的发展将进一步推动减少维度系统的物理和化学的进展,并将在电子学和光电子学领域提供新颖的应用。


Abstract

Layered structures of transition metal dichalcogenides stacked by van der Waals interactions are now attracting the attention of many researchers because they have fascinating electronic, optical, thermoelectric, and catalytic properties emerging at the monolayer limit. However, the commonly used methods for preparing monolayers have limitations of low yield and poor extendibility into large-area applications. Herein, we demonstrate the synthesis of large-area MoSe2 with high quality and uniformity by selenization of MoO3via chemical vapor deposition on arbitrary substrates such as SiO2 and sapphire. The resultant monolayer was intrinsically doped, as evidenced by the formation of charged excitons under low-temperature photoluminescence analysis. A van der Waals heterostructure of MoSe2 on graphene was also demonstrated. Interestingly, the MoSe2/graphene heterostructures show strong quenching of the characteristic photoluminescence from MoSe2, indicating the rapid transfer of photogenerated charge carriers between MoSe2 and graphene. The development of highly controlled heterostructures of two-dimensional materials will further promote advances in the physics and chemistry of reduced dimensional systems and will provide novel applications in electronics and optoelectronics.