位置:首页 >化学 >化学(综合) >ACS Nano >Designing Optoelectronic Properties by On-Surface Synthesis: Formation and Electronic Structure of an Iron–Terpyridine Macromolecular Complex

通过表面合成设计光电特性:铁-三联吡啶高分子配合物的形成和电子结构

Designing Optoelectronic Properties by On-Surface Synthesis: Formation and Electronic Structure of an Iron–Terpyridine Macromolecular Complex

作者:Agustin Schiffrin;Martina Capsoni;Gelareh Farahi;Chen-Guang Wang;Cornelius Krull;Marina Castelli;Tanya Roussy;Katherine A. Cochrane;Yuefeng Yin;Nikhil V. Medhekar;Michael Fuhrer;Adam Q. Shaw;Wei Ji;Sa

关键词:self-assembly,scanning tunneling microscopy,scanning tunneling spectroscopy,coordination polymers,Show More

DOI:https://doi.org/10.1021/acsnano.8b01026

发表时间:2018年

  • 文献详情
  • 相似文献

摘要

应用于表面的超分子化学方案为有机-无机界面结构的原子尺度控制提供了令人信服的途径。在这种方法中,吸附物-表面相互作用和二维限制可能导致形态和性质与通过传统合成方法实现的形态和性质显着不同。在这里,我们描述了基于铁(Fe)-三联吡啶(tpy)相互作用的一维配位纳米结构的自下而上的表面合成,该相互作用借鉴了光伏和催化应用中使用的功能性金属有机配合物。顺序沉积的配体和金属原子的热激活扩散以及配体内的构象变化导致 Fe-tpy 配位并形成这些纳米链。我们使用低温扫描隧道显微镜和密度泛函理论来阐明该系统的原子尺度形态,表明面对面的共面 tpy 基团之间存在线性三铁连接。扫描隧道光谱揭示了最高的占据轨道,其中主要贡献来自位于 Fe 节点的态,而配体态主要贡献于最低的未占据轨道。这种电子结构具有在可见/近红外区域进行光诱导金属到配体电荷转移的潜力。这种不寻常的 tpy/tri-Fe/tpy 配位基序的形成尚未在湿化学合成方法中观察到,而是由此处使用的自下而上的表面方法介导的,为设计金属的光电特性和反应性提供了途径-有机纳米结构。


Abstract

Supramolecular chemistry protocols applied on surfaces offer compelling avenues for atomic-scale control over organic–inorganic interface structures. In this approach, adsorbate–surface interactions and two-dimensional confinement can lead to morphologies and properties that differ dramatically from those achieved via conventional synthetic approaches. Here, we describe the bottom-up, on-surface synthesis of one-dimensional coordination nanostructures based on an iron (Fe)-terpyridine (tpy) interaction borrowed from functional metal–organic complexes used in photovoltaic and catalytic applications. Thermally activated diffusion of sequentially deposited ligands and metal atoms and intraligand conformational changes lead to Fe–tpy coordination and formation of these nanochains. We used low-temperature scanning tunneling microscopy and density functional theory to elucidate the atomic-scale morphology of the system, suggesting a linear tri-Fe linkage between facing, coplanar tpy groups. Scanning tunneling spectroscopy reveals the highest occupied orbitals, with dominant contributions from states located at the Fe node, and ligand states that mostly contribute to the lowest unoccupied orbitals. This electronic structure yields potential for hosting photoinduced metal-to-ligand charge transfer in the visible/near-infrared. The formation of this unusual tpy/tri-Fe/tpy coordination motif has not been observed for wet chemistry synthetic methods and is mediated by the bottom-up on-surface approach used here, offering pathways to engineer the optoelectronic properties and reactivity of metal–organic nanostructures.