位置:首页 >化学 >化学(综合) >ACS Nano >High Aspect Ratio Nanostructures Kill BacteriaviaStorage and Release of Mechanical Energy

高纵横比纳米结构通过储存和释放机械能杀死细菌

High Aspect Ratio Nanostructures Kill BacteriaviaStorage and Release of Mechanical Energy

作者:Denver P. Linklater;Michael De Volder;Vladimir A. Baulin;Marco Werner;Sarah Jessl;Mehdi Golozar;Laura Maggini;Sergey Rubanov;Eric Hanssen;Saulius Juodkazis;Elena P. Ivanova;

关键词:carbon nanotubes,vertically aligned carbon nanotubes,mechanobactericidal mechanism,storage of elastic energy,Show More

DOI:https://doi.org/10.1021/acsnano.8b01665

发表时间:2018年

  • 文献详情
  • 相似文献

摘要

全球由抗生素耐药细菌引起的无法治疗的感染数量不断增加,威胁需要设计和制造新一代杀菌材料。在这里,我们报告了抗菌表面的设计概念,其中细胞死亡是由于纳米特征在与附着细胞接触时偏转的能力造成的。我们使用三维透射电子显微镜证明,垂直排列碳纳米管(VACNT)的极高纵横比(100-3000)赋予了极高的柔韧性,这增强了碳纳米管在与细菌接触弯曲时的弹性能量存储。我们的实验和理论分析表明,对于高纵横比结构,碳纳米管中存储的弯曲能量是革兰氏阳性和革兰氏阴性细菌物理破裂的重要因素。通过改变 VACNT 的长度获得了最高的杀菌率(铜绿假单胞菌为 99.3%,金黄色葡萄球菌为 84.9%),使我们能够确定有效杀死不同类型细菌的最佳培养基特性。这项工作强调,高纵横比纳米特征的杀菌活性可以优于天然杀菌表面和先前研究中报道的其他合成纳米结构多功能表面。本系统表现出迄今为止报道的基于 CNT 的基质对革兰氏阴性细菌的最高杀菌活性,这表明在基于 VACNT 的基质上实现接近 100% 细菌灭活的可能性。


Abstract

The threat of a global rise in the number of untreatable infections caused by antibiotic-resistant bacteria calls for the design and fabrication of a new generation of bactericidal materials. Here, we report a concept for the design of antibacterial surfaces, whereby cell death results from the ability of the nanofeatures to deflect when in contact with attaching cells. We show, using three-dimensional transmission electron microscopy, that the exceptionally high aspect ratio (100–3000) of vertically aligned carbon nanotubes (VACNTs) imparts extreme flexibility, which enhances the elastic energy storage in CNTs as they bend in contact with bacteria. Our experimental and theoretical analyses demonstrate that, for high aspect ratio structures, the bending energy stored in the CNTs is a substantial factor for the physical rupturing of both Gram-positive and Gram-negative bacteria. The highest bactericidal rates (99.3% for Pseudomonas aeruginosa and 84.9% for Staphylococcus aureus) were obtained by modifying the length of the VACNTs, allowing us to identify the optimal substratum properties to kill different types of bacteria efficiently. This work highlights that the bactericidal activity of high aspect ratio nanofeatures can outperform both natural bactericidal surfaces and other synthetic nanostructured multifunctional surfaces reported in previous studies. The present systems exhibit the highest bactericidal activity of a CNT-based substratum against a Gram-negative bacterium reported to date, suggesting the possibility of achieving close to 100% bacterial inactivation on VACNT-based substrata.