位置:首页 >化学 >化学(综合) >ACS Nano >Tailored Emission Properties of ZnTe/ZnTe:O/ZnO Core–Shell Nanowires Coupled with an Al Plasmonic Bowtie Antenna Array

ZnTe/ZnTe:O/ZnO 核壳纳米线与铝等离激元蝴蝶结天线阵列耦合的定制发射特性

Tailored Emission Properties of ZnTe/ZnTe:O/ZnO Core–Shell Nanowires Coupled with an Al Plasmonic Bowtie Antenna Array

作者:Kui-Ying Nie;Xuecou Tu;Jing Li;Xuanhu Chen;Fang-Fang Ren;Guo-Gang Zhang;Lin Kang;Shulin Gu;Rong Zhang;Peiheng Wu;Youdou Zheng;Hark Hoe Tan;Chennupati Jagadish;Jiandong Ye;

关键词:plasmonic antennas,nanowires,exciton−plasmon coupling,II−VI semiconductors,localized surface plasmon,light emission

DOI:https://doi.org/10.1021/acsnano.8b03685

发表时间:2018年

  • 文献详情
  • 相似文献

摘要

操纵半导体纳米结构中的光与物质相互作用的能力对于在先进光电设备中实现功能来说是令人着迷的。在这里,我们报告了 ZnTe/ZnTe:O/ZnO 核壳单纳米线与一维铝领结天线阵列耦合的辐射发射的定制。等离子体天线能够改变激发和发射过程,从而导致 ZnTe/ZnTe:O/ZnO 核中结合到中间带态的近带边缘发射 (2.2 eV) 和亚能隙激子发射 (1.7 eV) 明显增强 –壳纳米线以及室温下表面增强拉曼散射。通过时间分辨光致发光光谱探测纳米线/天线系统中发射衰减率的增加,产生由局域表面等离子体共振引起的量子效率的可观察到的增强。电磁模拟与实验观察结果非常吻合,揭示了 ZnTe/ZnTe:O/ZnO 纳米线/天线系统中电近场强度增强和量子效率提高的综合效应。在低效发射器中定制光与物质相互作用的能力可以为设计具有精确控制响应的先进光电和传感设备提供替代平台。


Abstract

The ability to manipulate light–matter interaction in semiconducting nanostructures is fascinating for implementing functionalities in advanced optoelectronic devices. Here, we report the tailoring of radiative emissions in a ZnTe/ZnTe:O/ZnO core–shell single nanowire coupled with a one-dimensional aluminum bowtie antenna array. The plasmonic antenna enables changes in the excitation and emission processes, leading to an obvious enhancement of near band edge emission (2.2 eV) and subgap excitonic emission (1.7 eV) bound to intermediate band states in a ZnTe/ZnTe:O/ZnO core–shell nanowire as well as surface-enhanced Raman scattering at room temperature. The increase of emission decay rate in the nanowire/antenna system, probed by time-resolved photoluminescence spectroscopy, yields an observable enhancement of quantum efficiency induced by local surface plasmon resonance. Electromagnetic simulations agree well with the experimental observations, revealing a combined effect of enhanced electric near-field intensity and the improvement of quantum efficiency in the ZnTe/ZnTe:O/ZnO nanowire/antenna system. The capability of tailoring light–matter interaction in low-efficient emitters may provide an alternative platform for designing advanced optoelectronic and sensing devices with precisely controlled response.