实验方法> 生物信息学技术> 数据库>Developing Genetically Engineered Mouse Models to Study Tumor Suppression

Developing Genetically Engineered Mouse Models to Study Tumor Suppression

关键词: engineered mouse models来源: 互联网

  • Abstract
  • Table of Contents
  • Figures
  • Literature Cited

Abstract

 

Since the late 1980s, the tools to generate mice with deletions of tumor suppressors have made it possible to study such deletions in the context of a whole animal. Deletion of some tumor suppressors results in viable mice while deletion of others yield embryo lethal phenotypes, cementing the concept that genes that often go awry in cancer are also of developmental importance. More sophisticated mouse models were subsequently developed to delete a gene in a specific cell type at a specific time point. Additionally, incorporation of point mutations in a specific gene as observed in human tumors has also revealed their contributions to tumorigenesis. On the other hand, some models never develop cancer unless combined with other deletions, suggesting a modifying role in tumorigenesis. This review will describe the technical aspects of generating these mice and provide examples of the outcomes obtained from alterations of different tumor suppressors. Curr. Protoc. Mouse Biol. 2:9?24 © 2012 by John Wiley & Sons, Inc.

Keywords: knockout; knock?in; translocation; transgenic mouse; phenotype analysis

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Table of Contents

  • Introduction
  • Gene Deletion via Knockout Targeting Strategies
  • Characterizing Tumor Models
  • Generation of Mice with Deletions of Tumor Suppressors
  • Generating Conditional Loss‐of‐Function Alleles
  • Conditional Loss‐of‐Function Alleles for Tumor Suppressors Bypass Lethality and Expand Tumor Phenotypes
  • Generating Knock‐In Alleles
  • Translocations
  • Transgenic Mice
  • Allele Preservation
  • Literature Cited
  • Figures

        GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Materials

 

GO TO THE FULL PROTOCOL: PDF or HTML at Wiley Online Library Figures

  •   Figure 1. A p 53‐null allele. This diagram represents a p 53‐null allele that was generated by deletion of part of intron 4 and exon 5, with insertion of neo . The neo gene does not contain a polyadenylation (poly A) site and is forced to use an endogenous poly A signal upon integration limiting the number of random insertions. MC1‐tk encodes for the thymidine kinase. FIAU: 5‐iodo‐2′fluoro‐2′deoxy‐1‐β‐D ‐arabino‐furanosyl‐uracil. Numbers above boxes denote p 53 exons.
    View Image
  •   Figure 2. A p 53 conditional loss‐of‐function allele. The initial step introduces three lox P sites (red ovals) and a neo‐tk gene by homologous recombination into the p 53 locus. Cre‐mediated deletion of neo and not deletion of the entire p 53 gene is possible when Cre is weakly expressed. The Trp53F2‐10 allele then contains two lox P sites, which upon recombination delete p 53 exons 2‐10 in a tissue specific manner depending on Cre expression. Numbers above the boxes denote p 53 exons.
    View Image
  •   Figure 3. Double‐replacement strategy to generate a point mutation in p 53. In the first recombination step, PGKneoNTRtkpA , which transcribes both neo and tk genes, replaces p 53 exons 2‐6. G418 selection is used to narrow the number of ES cell colonies examined. In the second step, a correct p 53 gene containing a single point mutation in exon 5 (*) replaces PGKneoNTRtkpA and reconstructs the locus. This targeting construct also contained an unwanted deletion of a G nucleotide at a splice acceptor site. Numbered boxes denote p 53 exons.
    View Image
  •   Figure 4. A knock‐in p 53 allele. To generate a p53 knock‐in allele with a single point mutation, the targeting construct contains the PGKneo cassette flanked by lox P sites (red ovals) and the point mutation in exon 5. Cre‐mediated recombination deletes the PGKneo cassette and results in the knock‐in allele with a point mutation and a single residual lox P site in intron 4. Numbers above the boxes denote p 53 exons.
    View Image
  •   Figure 5. Chromosomal translocations. To generate chromosomal translocations, two alleles were generated each containing half of the Hprt gene, a resistance marker neomycin (neo) or hygromycin (hygro) and a lox P site. Addition of Cre recombinase brings the IgH enhancer region upstream of the coding exons (2 and 3) for c‐Myc causing inappropriate over expression of c‐Myc . The 5′ and 3′ ends of Hprt gene also come together and allow for selection by hprt .
    View Image

Videos

Literature Cited

Literature Cited
   Armstrong, J.F., Kaufman, M.H., Harrison, D.J., and Clarke, A.R. 1995. High‐frequency developmental abnormalities in p53‐deficient mice. Curr. Biol. 5:931‐936.
   Arumugam, P.I., Urbinati, F., Velu, C.S., Higashimoto, T., Grimes, H.L., and Malik, P. 2009. The 3′ region of the chicken hypersensitive site‐4 insulator has properties similar to its core and is required for full insulator activity. PLoS One 4:e6995.
   Beard, C., Hochedlinger, K., Plath, K., Wutz, A., and Jaenisch, R. 2006. Efficient method to generate single‐copy transgenic mice by site‐specific integration in embryonic stem cells. Genesis 44:23‐28.
   Bigner, S.H., Mark, J., Burger, P.C., Mahaley, M.S. Jr., Bullard, D.E., Muhlbaier, L.H., and Bigner, D.D. 1988. Specific chromosomal abnormalities in malignant human gliomas. Cancer Res. 48:405‐411.
   Brinster, R.L., Chen, H.Y., Trumbauer, M., Senear, A.W., Warren, R., and Palmiter, R.D. 1981. Somatic expression of herpes thymidine kinase in mice following injection of a fusion gene into eggs. Cell 27:223‐231.
   Brinster, R.L., Chen, H.Y., Warren, R., Sarthy, A., and Palmiter, R.D. 1982. Regulation of metallothionein‐thymidine kinase fusion plasmids injected into mouse eggs. Nature 296:39‐42.
   Cairns, P., Okami, K., Halachmi, S., Halachmi, N., Esteller, M., Herman, J.G., Jen, J., Isaacs, W.B., Bova, G.S., and Sidransky, D. 1997. Frequent inactivation of PTEN/MMAC1 in primary prostate cancer. Cancer Res. 57:4997‐5000.
   Cairns, P., Evron, E., Okami, K., Halachmi, N., Esteller, M., Herman, J.G., Bose, S., Wang, S.I., Parsons, R., and Sidransky, D. 1998. Point mutation and homozygous deletion of PTEN/MMAC1 in primary bladder cancers. Oncogene 16:3215‐3218.
   Capecchi, M.R. 1989. Altering the genome by homologous recombination. Science 244:1288‐1292.
   Chen, D., Livne‐bar, I., Vanderluit, J.L., Slack, R.S., Agochiya, M., and Bremner, R. 2004. Cell‐specific effects of RB or RB/p107 loss on retinal development implicate an intrinsically death‐resistant cell‐of‐origin in retinoblastoma. Cancer Cell 5:539‐551.
   Christophorou, M.A., Martin‐Zanca, D., Soucek, L., Lawlor, E.R., Brown‐Swigart, L., Verschuren, E.W., and Evan, G.I. 2005. Temporal dissection of p53 function in vitro and in vivo. Nat. Genet. 37:718‐726.
   Ciavatta, D., Kalantry, S., Magnuson, T., and Smithies, O. 2006. A DNA insulator prevents repression of a targeted X‐linked transgene but not its random or imprinted X inactivation. Proc. Natl. Acad. Sci. U.S.A. 103:9958‐9963.
   Clarke, A.R., Maandag, E.R., van Roon, M., van der Lugt, N.M., van der Valk, M., Hooper, M.L., Berns, A., and te Riele, H. 1992. Requirement for a functional Rb‐1 gene in murine development. Nature 359:328‐330.
   Clarke, A.R., Purdie, C.A., Harrison, D.J., Morris, R.G., Bird, C.C., Hooper, M.L., and Wyllie, A.H. 1993. Thymocyte apoptosis induced by p53‐dependent and independent pathways. Nature 362:849‐852.
   Collins, E.C., Pannell, R., Simpson, E.M., Forster, A., and Rabbitts, T.H. 2000. Inter‐chromosomal recombination of Mll and Af9 genes mediated by cre‐loxP in mouse development. EMBO Rep. 1:127‐132.
   Costantini, F. and Lacy, E. 1981. Introduction of a rabbit beta‐globin gene into the mouse germ line. Nature 294:92‐94.
   Cui, X., Ji, D., Fisher, D.A., Wu, Y., Briner, D.M., and Weinstein, E.J. 2011. Targeted integration in rat and mouse embryos with zinc‐finger nucleases. Nat. Biotechnol. 29:64‐67.
   Danielian, P.S., Muccino, D., Rowitch, D.H., Michael, S.K., and McMahon, A.P. 1998. Modification of gene activity in mouse embryos in utero by a tamoxifen‐inducible form of Cre recombinase. Curr. Biol. 8:1323‐1326.
   Derksen, P.W., Liu, X., Saridin, F., van der Gulden, H., Zevenhoven, J., Evers, B., van Beijnum, J.R., Griffioen, A.W., Vink, J., Krimpenfort, P., Peterse, J.L., Cardiff, R.D., Berns, A., and Jonkers, J. 2006. Somatic inactivation of E‐cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell 10:437‐449.
   Di Cristofano, A., Pesce, B., Cordon‐Cardo, C., and Pandolfi, P.P. 1998. Pten is essential for embryonic development and tumour suppression. Nat. Genet. 19:348‐355.
   Doetschman, T., Gregg, R.G., Maeda, N., Hooper, M.L., Melton, D.W., Thompson, S., and Smithies, O. 1987. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature 330:576‐578.
   Donehower, L.A. and Lozano, G. 2009. 20 years studying p53 functions in genetically engineered mice. Nat. Rev. Cancer 9:831‐841.
   Donehower, L.A., Harvey, M., Slagle, B.L., McArthur, M.J., Montgomery, C.A. Jr., Butel, J.S., and Bradley, A. 1992. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356:215‐221.
   Donehower, L.A., Harvey, M., Vogel, H., McArthur, M.J., Montgomery, C.A. Jr., Park, S.H., Thompson, T., Ford, R.J., and Bradley, A. 1995. Effects of genetic background on tumorigenesis in p53‐deficient mice. Mol. Carcinog. 14:16‐22.
   Evans, S.C., Viswanathan, M., Grier, J.D., Narayana, M., El‐Naggar, A.K., and Lozano, G. 2001. An alternatively spliced HDM2 product increases p53 activity by inhibiting HDM2. Oncogene 20:4041‐4049.
   Friend, S.H., Bernards, R., Rogelj, S., Weinberg, R.A., Rapaport, J.M., Albert, D.M., and Dryja, T.P. 1986. A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323:643‐646.
   Giraldo, P. and Montoliu, L. 2001. Size matters: Use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 10:83‐103.
   Gordon, J.W., Scangos, G.A., Plotkin, D.J., Barbosa, J.A., and Ruddle, F.H. 1980. Genetic transformation of mouse embryos by microinjection of purified DNA. Proc. Natl. Acad. Sci. U.S.A. 77:7380‐7384.
   Gossen, M., Freundlieb, S., Bender, G., Muller, G., Hillen, W., and Bujard, H. 1995. Transcriptional activation by tetracyclines in mammalian cells. Science 268:1766‐1769.
   Guo, C., Yang, W., and Lobe, C.G. 2002. A Cre recombinase transgene with mosaic, widespread tamoxifen‐inducible action. Genesis 32:8‐18.
   Halachmi, N., Halachmi, S., Evron, E., Cairns, P., Okami, K., Saji, M., Westra, W.H., Zeiger, M.A., Jen, J., and Sidransky, D. 1998. Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid tumors. Genes Chromosomes Cancer 23:239‐243.
   Harbour, J.W., Lai, S.L., Whang‐Peng, J., Gazdar, A.F., Minna, J.D., and Kaye, F.J. 1988. Abnormalities in structure and expression of the human retinoblastoma gene in SCLC. Science 241:353‐357.
   Hasty, P., Rivera‐Perez, J., and Bradley, A. 1991. The length of homology required for gene targeting in embryonic stem cells. Mol. Cell. Biol. 11:5586‐5591.
   Hasty, P., Rivera‐Perez, J., and Bradley, A. 1992. The role and fate of DNA ends for homologous recombination in embryonic stem cells. Mol. Cell. Biol. 12:2464‐2474.
   Hensel, C.H., Hsieh, C.L., Gazdar, A.F., Johnson, B.E., Sakaguchi, A.Y., Naylor, S.L., Lee, W.H., and Lee, E.Y. 1990. Altered structure and expression of the human retinoblastoma susceptibility gene in small cell lung cancer. Cancer Res. 50:3067‐3072.
   Hu, N., Gutsmann, A., Herbert, D.C., Bradley, A., Lee, W.H., and Lee, E.Y. 1994. Heterozygous Rb‐1 delta 20/+mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9:1021‐1027.
   Hu, W., Feng, Z., Teresky, A.K., and Levine, A.J. 2007. p53 regulates maternal reproduction through LIF. Nature 450:721‐724.
   Iwakuma, T. and Lozano, G. 2007. Crippling p53 activities via knock‐in mutations in mouse models. Oncogene 26:2177‐2184.
   Jacks, T., Fazeli, A., Schmitt, E.M., Bronson, R.T., Goodell, M.A., and Weinberg, R.A. 1992. Effects of an Rb mutation in the mouse. Nature 359:295‐300.
   Jacks, T., Remington, L., Williams, B.O., Schmitt, E.M., Halachmi, S., Bronson, R.T., and Weinberg, R.A. 1994. Tumor spectrum analysis in p53‐mutant mice. Curr. Biol. 4:1‐7.
   Jones, S.N., Hancock, A.R., Vogel, H., Donehower, L.A., and Bradley, A. 1998. Overexpression of Mdm2 in mice reveals a p53‐independent role for Mdm2 in tumorigenesis. Proc. Natl. Acad. Sci. U.S.A. 95:15608‐15612.
   Jonkers, J., Meuwissen, R., van der Gulden, H., Peterse, H., van der Valk, M., and Berns, A. 2001. Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nat. Genet. 29:418‐425.
   Joyner, A.L. 2001. Gene Targeting: A Practical Approach. Oxford University Press, New York.
   Kistner, A., Gossen, M., Zimmermann, F., Jerecic, J., Ullmer, C., Lubbert, H., and Bujard, H. 1996. Doxycycline‐mediated quantitative and tissue‐specific control of gene expression in transgenic mice. Proc. Natl. Acad. Sci. U.S.A. 93:10933‐10938.
   Knudson, A.G. Jr. 1971. Mutation and cancer: Statistical study of retinoblastoma. Proc. Natl. Acad. Sci. U.S.A. 68:820‐823.
   Knudson, A.G. Jr., Meadows, A.T., Nichols, W.W., and Hill, R. 1976. Chromosomal deletion and retinoblastoma. N. Engl. J. Med. 295:1120‐1123.
   Koch, J.G., Gu, X., Han, Y., El‐Naggar, A.K., Olson, M.V., Medina, D., Jerry, D.J., Blackburn, A.C., Peltz, G., Amos, C.I., and Lozano, G. 2007. Mammary tumor modifiers in BALB/cJ mice heterozygous for p53. Mamm. Genome 18:300‐309.
   Koller, B.H., Hagemann, L.J., Doetschman, T., Hagaman, J.R., Huang, S., Williams, P.J., First, N.L., Maeda, N., and Smithies, O. 1989. Germ‐line transmission of a planned alteration made in a hypoxanthine phosphoribosyltransferase gene by homologous recombination in embryonic stem cells. Proc. Natl. Acad. Sci. U.S.A. 86:8927‐8931.
   Lang, G.A., Iwakuma, T., Suh, Y.A., Liu, G., Rao, V.A., Parant, J.M., Valentin‐Vega, Y.A., Terzian, T., Caldwell, L.C., Strong, L.C., El‐Naggar, A.K., and Lozano, G. 2004. Gain of function of a p53 hot spot mutation in a mouse model of Li‐Fraumeni syndrome. Cell 119:861‐872.
   Lee, E.Y., To, H., Shew, J.Y., Bookstein, R., Scully, P., and Lee, W.H. 1988. Inactivation of the retinoblastoma susceptibility gene in human breast cancers. Science 241:218‐221.
   Lee, E.Y., Chang, C.Y., Hu, N., Wang, Y.C., Lai, C.C., Herrup, K., Lee, W.H., and Bradley, A. 1992. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288‐294.
   Lee, G. and Saito, I. 1998. Role of nucleotide sequences of loxP spacer region in Cre‐mediated recombination. Gene 216:55‐65.
   Lee, W.H., Bookstein, R., Hong, F., Young, L.J., Shew, J.Y., and Lee, E.Y. 1987. Human retinoblastoma susceptibility gene: Cloning, identification, and sequence. Science 235:1394‐1399.
   Lei, Q., Jiao, J., Xin, L., Chang, C.J., Wang, S., Gao, J., Gleave, M.E., Witte, O.N., Liu, X., and Wu, H. 2006. NKX3.1 stabilizes p53, inhibits AKT activation, and blocks prostate cancer initiation caused by PTEN loss. Cancer Cell 9:376‐378.
   Leibo, S.P. 1986. Cryobiology: Preservation of mammalian embryos. In Genetic Engineering of Animals (J.W. Evans and A. Hollaender, eds.) pp 251‐272. Plenum Publishing Corp., New York.
   Lengner, C.J., Steinman, H.A., Gagnon, J., Smith, T.W., Henderson, J.E., Kream, B.E., Stein, G.S., Lian, J.B., and Jones, S.N. 2006. Osteoblast differentiation and skeletal development are regulated by Mdm2‐p53 signaling. J. Cell Biol. 172:909‐921.
   Li, D.M. and Sun, H. 1997. TEP1, encoded by a candidate tumor suppressor locus, is a novel protein tyrosine phosphatase regulated by transforming growth factor beta. Cancer Res. 57:2124‐2129.
   Li, J., Yen, C., Liaw, D., Podsypanina, K., Bose, S., Wang, S.I., Puc, J., Miliaresis, C., Rodgers, L., McCombie, R., Bigner, S.H., Giovanella, B.C., Ittmann, M., Tycko, B., Hibshoosh, H., Wigler, M.H., and Parsons, R. 1997. PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943‐1947.
  
推荐方法

Copyright ©2007 ANTPedia, All Rights Reserved

京ICP备07018254号 京公网安备1101085018 电信与信息服务业务经营许可证:京ICP证110310号